Zjawiska dyspersyjne
i przewodnictwo elektryczne
w relaksorach, multiferroikach
i strukturach wielowarstwowych
Ryszard Skulski

Zjawiska dyspersyjne
i przewodnictwo elektryczne
w relaksorach, multiferroikach
i strukturach wielowarstwowych
Redaktor serii: Informatyka i Inżynieria Biomedyczna
Mariusz Boryczka

Recenzent
Jan Suchanicz
Spis treści

1. Wstęp ................................................................. 7

2. Podstawowe pojęcia dotyczące dielektryków ........................................... 9
   2.1. Dipole w polu stałym ........................................... 9
   2.2. Dipole w polu zmiennym. Zespólona przenikalność elektryczna ............. 12

3. Polaryzacja relaksacyjna .................................................. 15
   3.1. Zachowanie polaryzacji: relaksacyjne i rezonansowe ......................... 15
   3.2. Zachowanie polaryzacji w polu elektrycznym sinusoidalnie zmiennym ...... 16
   3.3. Wykres Cole’a—Cole’a ............................................ 20
   3.4. Zależność czasu relaksacji od temperatury .................................... 21
   3.5. Wiele czasów relaksacji ............................................ 22
   3.6. Dwa czasy relaksacji .............................................. 23
   3.7. Ciągły rozkład czasów relaksacji ....................................... 24
   3.8. Równanie Havriliaka—Negami ....................................... 27
   3.9. Funkcje rozkładu czasów relaksacji w relaksorach ......................... 28

4. Polaryzacja rezonansowa .................................................. 33
   4.1. Drgania naładowanych cząsteczek w jednym wymiarze ...................... 33
   4.2. Rodzaje (mody) drgań w jednowymiarowej sieci krystalicznej .............. 36
   4.3. Elementy teorii dynamicznej ferroelektryków ................................ 39
   4.4. Dynamika relaksorów .............................................. 46

5. Zjawiska dyspersyjne w ceramicie ferroelektrycznej .............................. 49
   5.1. Relaksacja ładunku przestrzennego spowodowana defektami powstającymi podczas spiekania ....................................................... 49
   5.2. Relaksacja przenikalności elektrycznej związana ze ścianami domenowymi 50
   5.3. Relaksacja przenikalności elektrycznej na wysokich częstotliwościach .......... 50

6. Multiferroiki, multirelaksory i birelaksory ..................................... 51
   6.1. Multiferroiki — ogólne pojęcia ..................................... 51
   6.2. Multirelaksory i birelaksory — ogólne pojęcia ................................ 53

7. Dyspersja a przewodnictwo zmiennoprądowe ..................................... 57
   7.1. Uwagi ogólne ....................................................... 57
Spis treści

7.2. Dyspersja i przewodnictwo zmiennoprądowe w roztworach stałych o właściwościach ferroelektrycznych i relaksorowych .......................... 58
7.3. Zjawiska dyspersyjne i przewodnictwo zmiennoprądowe w multiferroikach ................................................................. 61

8. Dyspersja niskoczęstotliwościowa w silnych polach elektrycznych .............................................................. 67
  8.1. Uwagi ogólne ................................. 67
  8.2. Dyspersja w silnych polach elektrycznych w ceramicie PMN-PT ................................. 67

9. Zjawiska dyspersyjne w strukturach wielowarstwowych ............................................................. 71
  9.1. Uwagi ogólne ........................................ 71
  9.2. Kondensatory MLCC ................................. 71
  9.3. Zjawiska dyspersyjne w kondensatorach MLCC ................................. 72

10. Materiały z kolosalną przenikalnością elektryczną ................................................................. 75

11. Wpływ technologii otrzymywania na zjawiska dyspersyjne w wybranych materiałach o właściwościach ferroelektrycznych i relaksorowych ................................................................. 77
  11.1. PMN-PT ........................................ 77
  11.2. Kompozyty ceramiczne PMN-PT-ferryt ........................................ 81
  11.3. Wieloskładnikowe roztwory stałe do zastosowań w kondensatorach MLCC ................................. 85

Spis literatury ........................................ 87

Summary .......................................................... 93
Wstęp

Powszechnie wiadomo, że pod pojęciem dyspersji rozumie się zależność jakiejś wielkości od częstotliwości pola pomiarowego. Tą wielkością może być na przykład przenikalność elektryczna. Niniejsza praca dotyczy zjawisk dyspersyjnych, jakie zachodzą w ferroelektrykach, relaksorach i multiferroikach. Autor starał się pokazać różne aspekty tego zagadnienia w wymienionych materiałach. Wiele fragmentów tej pracy powstało podczas realizacji kilku tematów badawczych (grantów), którymi kierował autor podczas ostatnich kilkunastu lat. Rezultaty badań części materiałów były już opublikowane w cytowanych pracach. Wybór poddanych analizie materiałów może wydawać się dość subiektywny, jednak aby przedstawić aspekty tytułowego zagadnienia, konieczne było jego ograniczenie.

Rozdziały 2—4 przedstawionej pracy dotyczą podstawowych definicji używanych do opisywania zjawisk dyspersji przenikalności elektrycznej w di-elektrykach różnego rodzaju, rozdział 5. traktuje o zjawiskach dyspersyjnych w ceramikach ferroelektrycznych, a w rozdziale 6. zaprezentowano podstawowe pojęcia związane z multiferroikami, multirelaksorami i birelaksorami. Tematem rozdziału 7. jest relacja między dyspersją przenikalności elektrycznej a przewodnictwem zmiennoprądowym. W rozdziale 8. omówiono zagadnienia niskoczęstotliwościowej dyspersji w silnych polach elektrycznych, rozdział 9. natomiast dotyczy zjawisk dyspersyjnych w strukturach wielowarstwowych, ze szczególnym uwzględnieniem wielowarstwowych kondensatorów ceramicznych (MLCC). W rozdziale 10. omówiono zagadnienia związane z grupą materiałów, w których występuje zjawisko zwane kolosalną przenikalnością elektryczną. Rozdział 11. traktuje o zagadnieniach relacji między zjawiskami dyspersyjnymi a technologią materiałów ceramicznych.
Ryszard Skulski

Dispersion and Electrical Conductivity Phenomena in Relaxors, Multiferroics, and Multilayer Structures

Summary

The phenomenon of ferroelectricity was discovered less than 100 years ago and a rapid increase in the group of ferroelectrics has been discernible since the 1950s. Among them, an important place is occupied by ferroelectrics with perovskite structure and their solid solutions. A group of materials that is very close to ferroelectrics are the so-called relaxors and relaxor ferroelectrics, which are characterized by exceptional application properties. Multiferroics and multilayer structures are another group of materials with specific application qualities; in these materials, the phenomenon of ferroelectricity plays an important role. For application reasons (lower cost), these materials are often produced in the ceramic form.

The subject matter of the present monograph is the aforementioned group of materials, i.e. relaxors, multiferroics, and multilayer structures in the ceramic form. The work attempts to systematize and complete the knowledge of these materials, including the phenomena (effects) occurring in them. Moreover, it provides a review of literature published on this subject over many years.